Training Detail

Advanced AI Course with Data Analytics and Machine Learning (Level 1)

Advanced AI Course with Data Analytics and Machine Learning (Level 1)

Advanced AI Course with Data Analytics and Machine Learning (Level 1)

Duration: 60 hours

Delivery Mode: Hybrid (Theory + Hands-on + Self-Study) 

Tools: Python, Pandas, NumPy, Scikit-learn, Matplotlib/Seaborn, KNIME, Jupyter

Fees: 24999/-

Syllabus  

WEEK 1: Data Analytics Fundamentals & Statistics 

Day 1 – Business Analytics Foundation 

• Introduction to Business & Data Analytics 

• Case Studies and Use Cases in Industry 

• Data-driven Decision Making 

• Types of Data, Scales of Measurement 

Day 2 – Descriptive Statistics & Probability 

• Mean, Median, Mode, Variance, Std Dev 

• Probability Theory Basics 

• Probability Distributions: ◦ Normal, Binomial, Poisson 

Day 3 – Sampling and Inference 

• Sampling Techniques 

• Central Limit Theorem 

• Confidence Intervals 

• Hypothesis Testing: Z-test, Chi-Square Test 

Day 4 – Correlation, Regression & Outliers 

• Correlation & Covariance 

• Pearson Correlation 

• Simple Linear Regression 

• Detecting Outliers, Skewness 

Day 5 – Tools & Hands-On 

• Python Setup for Analytics 

• Pandas, NumPy, Matplotlib, Seaborn 

• Exploratory Data Analysis Lab 

WEEK 2: Machine Learning Concepts and Feature Engineering 

Day 6 – ML in a Nutshell 

• Types of ML: Supervised, Unsupervised 

• ML Workflow: From Data to Model 

• Applications in Finance, Health, Marketing 

Day 7 – Data Preparation & Cleaning 

• Handling Missing Values 

• Data Normalization & Scaling 

• Feature Encoding: Label & One-hot 

• Outlier Removal Techniques 

Day 8 – Feature Engineering & Dimensionality Reduction 

• Feature Creation & Selection 

• PCA (Principal Component Analysis) 

• t-SNE for Data Visualization 

• Introduction to KNIME 

Day 9 – Supervised ML Algorithms 

• Linear Regression (Ridge/Lasso) 

• Logistic Regression 

• Decision Trees, Oblique Trees 

• KNN and SVM 

Day 10 – Hands-On Lab 

• Preprocessing Pipeline 

• Model Training and Evaluation using Scikit-learn 

• Cross-validation, Overfitting Control 

WEEK 3: Advanced ML Algorithms & Evaluation 

Day 11 – Ensemble Learning 

• Random Forests 

• Bagging vs. Boosting 

• Gradient Boosting (XGBoost, LightGBM) 

Day 12 – Unsupervised Learning 

• K-Means, DBSCAN 

• Clustering Evaluation Metrics 

• Association Rules & Apriori Algorithm 

Day 13 – Recommender Systems & Time Series 

• Content-based & Collaborative Filtering 

• Intro to Time Series Forecasting (ARIMA) 

Day 14 – Anomaly Detection 

• Isolation Forest 

• Use Case: Fraud & Intrusion Detection 

• Hands-on Implementation 

Day 15 – Model Metrics & Evaluation 

• Confusion Matrix, Precision, Recall 

• F1 Score, ROC-AUC • MSE, RMSE, MAE 

• Use of these metrics in real-world decisions 

WEEK 4: Applications, Deployment & Capstone 

Day 16 – Real-Time ML & Model Deployment 

• Model Serving Concepts 

• REST APIs, Batch vs Real-Time Scoring 

• Model Monitoring Day 17 – Capstone Planning & Case Study Brief 

• Credit Card Fraud Detection 

• Intrusion Detection System 

• Business Recommendation System 

Day 18–19 – Capstone Execution 

• Data Preparation 

• Model Selection 

• Evaluation & Optimization 

Day 20 – Capstone Review & Certification 

• Group Presentations 

• Model Walkthroughs 

• Feedback and Industry Readiness Evaluation 

• Final Assessment & Certification Distribution Self-Study (Parallel Learning – Daily) 

• Readings: “Hands-On ML with Scikit-Learn, Keras, and TensorFlow” 

• Exercises: Kaggle Competitions & Public Datasets 

• Mini Projects: Exploratory Analysis, Model Training 

• Metrics Interpretation & Confusion Matrix Deep Dive Outcome: 

• Build, evaluate, and deploy end-to-end machine learning pipelines 

• Analyze business data using statistical and machine learning techniques 

• Deliver industry-relevant solutions using Python-based ML stack


Get in Touch!

We Would like to hear from you. Fill Free for any Query

Contact Us!